icu.next-video

Contenu proposé par

Réseau Canopé

Regarde cette vidéo et gagne facilement jusqu'à 15 Lumniz en te connectant !

Il n’y a pas de Lumniz à gagner car tu as déjà consommé cet élément. Ne t'inquiète pas, il y a plein d'autres contenus intéressants à explorer et toujours plus de Lumniz à gagner.

->   En savoir plus
Maths02:25Publié le 18/11/2016

Proportionnalité et échelles

Résolution de problèmes

La Toque, que fais-tu ?
Ah, je vois.
Tu regardes sur la carte où tu dois livrer ces gâteaux.
Tu veux savoir à combien de kilomètres cette maison est située par rapport à notre pâtisserie.
Une carte est une représentation à échelle réduite d'une ville, d'une région ou d'un pays.
Il faut d'abord savoir à quelle échelle est ta carte.
Regarde. Celle-ci est au 1/200 000e.
Tu crois que cette échelle peut t'aider à calculer la distance ?
Sur un plan ou une carte, on représente les distances réelles en les réduisant proportionnellement.
Donc, si la distance pâtisserie-maison mesure 8 centimètres sur la carte, alors, la distance réelle est de 200 000 fois 8 centimètres, soit 1 600 000 centimètres.
Cela peut paraître énorme, mais il faut la convertir en kilomètres.
Si on divise par 100, on trouve 16 000 mètres.
Et si on divise encore par 1 000, cela fait 16 kilomètres.
Voilà, ta première livraison est à 16 kilomètres.
Et pour les deux autres ?
Alors, 3,8 centimètres pour la plus proche, et 16 centimètres pour la plus éloignée.
Si ce point de livraison est à 16 centimètres de la pâtisserie, soit 2 fois 8 centimètres sur la carte, il est à 2 fois 16, 32, 32 kilomètres en réalité.
8 centimètres sur la carte, c'est 16 kilomètres en réalité, à l'échelle au 200 000e.
Regarde, c'est indiqué là.
Donc, ce point-ci est à 3,8 fois 2, c'est-à-dire 7,6 kilomètres.
Mais... La Toque, tu aurais pu attendre la fin de mes explications !

Réalisateur : Canopé

Producteur : Canopé

Année de copyright : 2016

Année de production : 2016

Année de diffusion : 2016

Publié le 18/11/16

Modifié le 16/01/23

Ce contenu est proposé par